Math E-21a - Some useful facts

Basic Chain Rule:
$$\frac{d}{dt} \Big[f(x(t), y(t)) \Big] = \frac{\partial f}{\partial x} \frac{dx}{dt} + \frac{\partial f}{\partial y} \frac{dy}{dt} = \nabla f \cdot \mathbf{v} \text{ for a path in } \mathbf{R}^2;$$
$$\frac{d}{dt} \Big[f(x(t), y(t), z(t)) \Big] = \frac{\partial f}{\partial x} \frac{dx}{dt} + \frac{\partial f}{\partial y} \frac{dy}{dt} + \frac{\partial f}{\partial z} \frac{dz}{dt} = \nabla f \cdot \mathbf{v} \text{ for a path in } \mathbf{R}^3.$$

Directional Derivative of a function f in the direction **u** (unit vector): $D_{\mathbf{u}}f = \nabla f \cdot \mathbf{u}$

Fundamental Theorem of Line Integrals: If V is differentiable and C is a curve from point \mathbf{x}_0 to point \mathbf{x}_1 , then $\int_C \overline{\nabla V} \cdot \overline{dr} = V(\mathbf{x}_1) - V(\mathbf{x}_0).$

Green's Theorem: If P(x, y) and Q(x, y) are differentiable with continuous 1st partial derivatives through a bounded region D in \mathbb{R}^2 and if C is the boundary of D oriented in the counterclockwise sense, then

$$\oint_C P(x, y) dx + Q(x, y) dy = \iint_D \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dA.$$

Curl and Divergence: If $\mathbf{F}(x, y, z) = \left\langle P(x, y, z), Q(x, y, z), R(x, y, z) \right\rangle$ is a vector field in \mathbf{R}^3 with differentiable component functions, then $\text{curl} \mathbf{F} = \left\langle \frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z}, \frac{\partial P}{\partial z} - \frac{\partial R}{\partial x}, \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right\rangle$ and $\text{div } \mathbf{F} = \frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z}$.

Divergence Theorem: If the components of the vector field \mathbf{F} are differentiable with continuous 1^{st} partial derivatives through a bounded region B in \mathbf{R}^3 and if S is the boundary of B oriented with unit outward normal vector \mathbf{n} , then $\oiint_S \mathbf{F} \cdot d\mathbf{S} = \oiint_S (\mathbf{F} \cdot \mathbf{n}) dS = \iiint_B (\text{div } \mathbf{F}) dV$.

Stokes' Theorem: If the components of the vector field **F** are differentiable with continuous 1st partial derivatives through a surface S in \mathbf{R}^3 oriented with unit normal vector **n** and if C is the boundary of S oriented counterclockwise relative to **n**, then $\oint_C \mathbf{F} \cdot d\mathbf{r} = \iint_S (\text{curl } \mathbf{F}) \cdot \mathbf{n} \, dS = \iint_S (\text{curl } \mathbf{F}) \cdot d\mathbf{S}$.

Surface integration "toolkits":

Sphere of radius
$$R$$
:
$$\begin{cases} x = R\cos\theta\sin\phi \\ y = R\sin\theta\sin\phi \\ z = R\cos\phi \end{cases}, \quad \mathbf{n} = \frac{\langle x, y, z \rangle}{R}, \quad dS = R^2\sin\phi d\phi d\theta, \quad x^2 + y^2 + z^2 = R^2$$

Cylinder of radius
$$R$$
:
$$\begin{cases} x = R\cos\theta \\ y = R\sin\theta \\ z = z \end{cases}$$
, $\mathbf{n} = \frac{\langle x, y, 0 \rangle}{R}$, $dS = Rdzd\theta$, $x^2 + y^2 = R^2$

Graph of
$$f(x, y)$$
: $\begin{cases} x = x \\ y = y \\ z = f(x, y) \end{cases}$, $\mathbf{n} = \frac{\langle -f_x, -f_y, 1 \rangle}{\sqrt{1 + f_x^2 + f_y^2}}$, $dS = \frac{dx \, dy}{|\mathbf{n} \cdot \mathbf{k}|} = \sqrt{1 + f_x^2 + f_y^2} \, dx \, dy$

General parameterized surface: $\mathbf{r}(s,t) = \langle x(s,t), y(s,t), z(s,t) \rangle$, $dS = \left\| \frac{\partial \mathbf{r}}{\partial s} \times \frac{\partial \mathbf{r}}{\partial t} \right\| ds \, dt$, $\overline{dS} = \left(\frac{\partial \mathbf{r}}{\partial s} \times \frac{\partial \mathbf{r}}{\partial t} \right) ds \, dt$

Geometry formulas: Volume of a ball of radius R: $=\frac{4}{3}\pi R^3$; Surface area of a sphere of radius R: $=4\pi R^2$

Useful identities:
$$\cos^2 \theta = \frac{1 + \cos 2\theta}{2}$$
, $\sin^2 \theta = \frac{1 - \cos 2\theta}{2}$, $\sin^2 \theta + \cos^2 \theta = 1$