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Basic Facts - Dot Products and Cross Products 

In addition to the most basic operations of scaling and vector addition (both done component-wise), the 
measurement of lengths and angles are facilitated by the dot product of vectors (also known as the inner 
product). The dot product can be defined in nR  for any n which allows for the definition of orthogonality in any 
dimension. In addition, the cross product (defined only in 3R ) allows us construct a vector orthogonal to any 
pair of vectors and also to measure areas of parallelograms. 

Definition: The dot product of two vectors u, v in nR  is a scalar defined as follows: 

1 2 1 2 1 1 2 2, , , , , ,n n n nu u u v v v u v u v u v      u v     

There are some easy-to-verify algebraic properties of the dot product that follow from this definition: 

Algebraic Properties of the Dot Product: Suppose u, v, and w are vectors in nR  and that t is any scalar. 

1)   v u u v  (symmetry, dot product is commutative) 

2) 
( )

( )

      
       

u v w u v u w

u v w u w v w
 (left and right distributive laws) 

3) ( ) ( ) ( )t t t    u v u v u v  (how the dot product behaves relative to scaling of vectors) 

4) 
2 2

0  for all  (and 0  only for )      u u u u u u u u 0  

Using these algebraic properties and the Law of Cosines (a corollary of the Pythagorean Theorem) we were 
able to derive the following important property of the dot product: 
If u, v in nR  are two vectors emanating out from a common vertex to form an angle  , and if u  and v  are 

their respective lengths, then cos u v u v . The great importance of this relation is that connects the 

algebraically-defined dot product to the geometric measurements of lengths and angles. 

We immediately get the following corollary using some basic trigonometric facts: If u, v in nR  are nonzero 
vectors emanating from a common vertex to form an angle  , then 

0 u v  if and only if the angle   is acute 

0 u v  if and only if the angle   is obtuse 

0 u v  if and only if the angle   is a right angle, i.e. u v  

We can also use the relation cos u v u v  (and a sketch) to define the scalar projection of a vector v 

in the direction of another vector u (also called the component of v in the direction of u) as 
u

v
u

. This is 

perhaps best remembered by noting that to find the component of a vector v in any given direction, you “dot v 
with a unit vector in that direction”. We can then use this fact to define the vector projection of v in the 

direction of u by construction it as 2Proj
   

           
u

u u v u
v v u

u u u
. This can be useful for expressing a vector 

as the sum of a “tangential component” vector and a “normal component” vector, especially in geometry and 
physics. 

The fact that the orthogonality of vectors can be characterized algebraically by their dot product being zero 
allowed us to derive that the equation of a plane with normal vector n and passing through a point with position 
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vector 0x  must be of the form 0( ) 0  n x x  where x  represents the position vector of any other point on the 

plane. In 3R , if we express this in components with , ,A B Cn , 0 0 0 0, ,x y zx , and , ,x y zx , this 

becomes 0 0 0( ) ( ) ( ) 0A x x B y y C z z       or Ax By Cz D    where D is the constant obtained after 

multiply out and transposing constants to the right-hand-side. In problems, we often jump to this form once we 
know the normal vector and determine D by plugging in the coordinates of the given point. 

It is sometimes the case that we need to find the equation of a plane given not a normal vector and a single 
point, but rather three non-colinear points. In this case, we can take points pairwise to produce vectors parallel 
to the plane and may desire to use these to find a vector orthogonal to the plane. A convenient way to do this is 
via the cross product (defined only in 3R ). Given two vectors 1 2 3, ,u u uu  and 1 2 3, ,v v vv  in 3R , we can 

use the orthogonality requirement to show that the following cross product will be orthogonal to both vectors: 

1 2 3 1 2 3 2 3 3 2 3 1 1 3 1 2 2 1, , , , , ,u u u v v v u v u v u v u v u v u v      u v  

There are several different ways to express this using the definition of a 2 2  determinant, namely 

det
a b a b

ad bc
c d c d
      

. Examining the above expression we see that: 

2 3 3 1 2 3 1 31 2 1 2

2 3 3 1 2 3 1 31 2 1 2

, , , ,
u u u u u u u uu u u u
v v v v v v v vv v v v

   u v  

Note the sign switch in the middle component. This is done so that you can conveniently perform the 

calculation by creating a 2 3  array from the given two vectors 1 2 3

1 2 3

u u u
v v v
 
  

 and then respectively covering the 

1st, 2nd, and 3rd columns and calculating the determinant of the resulting 2 2  determinants (with appropriate 
sign switch of the middle component. For example, if 1,3,6u  and 2,5, 4 v , we would get the array 

1 3 6
2 5 4

 
  

 and use the procedure to calculate 12 30, (4 12),5 6 18, 16,11        u v . A quick check 

using the dot product shows that this is orthogonal to both u and v. 

Some people prefer to express this procedure using  , ,i j k  notation by formally calculating the 3 3  

determinant 2 3 1 3 1 2
1 2 3

2 3 1 3 1 2
1 2 3

u u u u u u
u u u

v v v v v v
v v v

  
i j k

i j k . 

Using only this algebraic definition for the cross product, we can derive the following properties: 

Algebraic Properties of the Cross Product: Suppose u, v, and w are vectors in 3R  and that t is any scalar. 

1)    v u u v  (anticommutative)   [Corollary:  u u 0  for any vector u ] 

2) 
( )

( )

      
       

u v w u v u w

u v w u w v w
 (left and right distributive laws) 

3) ( ) ( ) ( )t t t    u v u v u v     (how the dot product behaves relative to scaling of vectors) 

4)  u 0 0  

5) ( ) ( )    u v w u v w     (triple scalar product) 

6) ( ) ( ) ( )     u v w u w v u v w     (triple vector product) 
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All of the above algebraic properties of the cross product except for the last one are straightforward. You 
can prove the last one by noting that the first component would be: 

2 3
2 1 2 2 1 3 3 1 1 3 2 1 2 2 2 1 3 3 1 3 1 3

3 1 1 3 1 2 2 1

2 1 2 2 2 1 3 3 1 3 1 3 1 1 1 1 1 1 1 1 2 2 3 3 1 1 1 2 2 3 3 1

1 1

( ) ( )

( ) ( )

( ) ( )

u u
u v w v w u v w v w u v w u v w u v w u v w

v w v w v w v w

u v w u v w u v w u v w u v w u v w u w u w u w v u v u v u v w

v w

       
 

           
   u w u v

 

Similarly, we can show that the 2nd and 3rd components are 2 2( ) ( )v w  u w u v  and 3 3( ) ( )v w  u w u v . 

Together these give that ( ) ( ) ( )     u v w u w v u v w . Physicists (and others) often refer to this property 
as the “BAC-CAB Rule” and express it as ( ) ( ) ( ) ( ) ( )         A B C A C B A B C B A C C A B . 

We can independent define the cross product in purely geometric terms. 

Geometric definition of the cross product: Suppose u and v are vectors in 3R . Then the cross product u v  is 
the unique vector in 3R  such that: 

(1) u v  is orthogonal to both u and v; 
(2) the magnitude of the cross product u v  is equal to the area of the parallelogram determined by u and v; 

(3) u v  is oriented according to the Right-Hand Rule (as explained in class and elsewhere). 

It is true that these three properties uniquely determine the cross product, and we can also easily derive the 
previous algebraic definition from these requirements. We can also derive these geometric properties from the 
algebraic definition using the previously stated algebraic properties. Specifically: 

(1) ( ) ( ) 0       u u v u u v 0 v , so u v  is orthogonal to the vector u; 
( ) ( ) 0       u v v u v v u 0 , so u v  is orthogonal to the vector v. 

(2) If we consider the parallelogram determined by u and v and let   be the angle between these vectors 
(drawing a picture is advisable), then the area of the parallelogram will be given by 
(length of base)( height) sin  u v . Squaring both sides gives 

2 2 2 2 2 2 2 2 2 22 2 2 2 2(Area) sin (1 cos ) cos ( )         u v u v u v u v u v u v  

On the other hand, 
2 2 2 2( ) ( ) [ ( )] [( ) ( ) ] ( )                u v u v u v u v u v u v v u v u v u v u v  

Therefore 
22(Area)  u v , so Area  u v . 

(3) You can easily calculate using the algebraic definition that  i j k  which satisfies the Right-Hand Rule. 
Then argue using a continuity argument that if this is true for these two vectors than by continuously 
varying these vectors in 3R  to align them with the given two vectors, the right-hand rule must be 
preserved. 

Volume and the Triple Scalar Product: We showed that, up to sign, the volume of the parallelepiped 

determined by the three vectors u, v, and w in 3R  is given by the triple scalar product 
1 2 3

1 2 3

1 2 3

( )
u u u
v v v
w w w

  u v w . 

That is, the volume is ( ) u v w  or ( ) u v w . 


