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Parameterized Curves and Vector-Valued Functions 

Vector-valued functions abound in physics and in the study of the geometry of curves and surfaces. This 

includes such physically important examples as force, the angular momentum vector, torque, and the most 

basic notions of position, velocity, and acceleration. 

If, for the moment, we focus primarily on parameterized curves (or paths) where the parameter is the time t, 

we can describe motion (in R3, but the ideas are the same in R2) by specifying the position at any time t by its 

coordinates ( ( ), ( ), ( ))x t y t z t . We can then define the position vector (relative to the origin) as the vector 

( ) ( ), ( ), ( )t x t y t z t=r  from the origin to this point. The tip of the position vector will then trace out the path. 

We can speak of the derivative of this or any other vector-valued 

function by simply taking the derivatives of the respective component 

functions. A simple geometric (and calculus) argument shows that the 

derivative ( ) ( ), ( ), ( ) ( )t x t y t z t t   = =r v  is necessarily tangent to the 

path in the direction of motion (or it’s the zero vector) and its units are 

in terms of distance per time. We define ( ) ( )t t=v r  to be the velocity 

vector for this parameterized curve. Similarly, we can define the 

acceleration vector ( ) ( ) ( )t t t = =a v r  as the derivative of the velocity 

vector. The acceleration is generally in the direction of the turn unless 

the path is a straight line. 

 

We also define the speed as the magnitude of the velocity vector, i.e. ( )tv . If we think of a parameterized 

curve as define starting with time t a= , we can let s denote the arclength of the curve to any other point on the 

path. We can then, alternatively, also think of the speed simply as ds
dt

, the time rate of change of distance 

traveled, and we can conclude that ( ) ds
dt

t =v . In terms of differentials, we can then write ( )ds t dt= v  and, 

using a little bit of basic integral calculus, conclude that the total arclength traveled along a curve for a t b   

must be ( )
b

a
L t dt=  v . 

It’s worth noting that since ( )tv  almost always involves square roots, this arclength integral tends to be 

one of the more difficult integrals to calculate using integration techniques and it is often best to use numerical 

integration in its calculation. 

Whether we’re considering a parameterized curve or any other vector-valued function, it’s useful to know 

some basic rules of differentiation, especially when working with sums, dot products, cross products, and 

compositions. 

Basic Rules of Differentiation for Vector-Valued Functions: 

If ( )tu  and ( )tv  are vector-valued functions, ( )f t  is any scalar-valued function, and c is any constant, then: 

1) [ ( ) ( )] ( ) ( )d
dt

t t t t + = +u v u v  [The derivative of a sum is the sum of the derivatives.] 

2) [ ( )] ( )d
dt

c t c t=u u    [Scalars pass through derivatives just as with ordinary differentiation.] 

3) [ ( ) ( )] ( ) ( ) ( ) ( )d
dt

f t t f t t f t t = +u u u  [Product Rule for scalar multiplication.] 

4) [ ( ) ( )] ( ) ( ) ( ) ( )d
dt

t t t t t t  =  + u v u v u v  [Product Rule for dot products.] 

5) [ ( ) ( )] ( ) ( ) ( ) ( )d
dt

t t t t t t  =  + u v u v u v  [Product Rule for cross products.] 

6) [ ( ( ))] ( ) ( ( ))d
dt

f t f t f t =u u   [Chain Rule for compositions.] 
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Each of these follows by applying the familiar rules of differentiation in the components. In particular, note 

that since the cross product is not commutative (it’s anti-commutative), the order of the factors matters. 

Velocity, unit tangent vector, unit normal vector, and curvature 

For a parameterized curve described by ( )tr , as long as its velocity vector ( )tv  is nonzero, this velocity 

vector will be tangent to the path for all t in the direction of the path. We can divide out its magnitude (the 

speed) to define the unit tangent vector 
( )

( )
( )

t
t

t
=

v
T

v
. This is a unit vector in the direction of the path. 

[It’s worth noting that we can use the position vector at a given time t to determine a point on the path and 

either the velocity vector or the unit tangent vector at that time t to determine a tangent vector to the path at the 

given point. These can ten be used to write down a parameterization of the tangent line to the path at that point.] 

We can use the Differentiation Rules to draw some addition conclusions and make a few new definitions. 

Since T is a unit vector, it follows that 
2

1 = =T T T . We can then 

differentiate both sides (with respect  

to t) to get that 2 0   +  =  =T T T T T T . So 0 =T T . This means that 

either  =T 0  (which would be the case for a straight line path) or, more 

generally,  ⊥T T. That is, the rate of change of the (unit) direction vector is 

perpendicular to the path for all t. [Note: We would draw the same 

conclusion regardless of the parameter – a useful thing in the case where we 

may choose to parameterize the curve by arclength s rather than by time t.] 

If the path is parameterized by (time) t, we can use the previous 

observation to define a unit normal vector to the path by 
( )

( )
( )

t
t

t


=



T
N

T
, a 

unit vector perpendicular to the path that points in the direction of the turn. 
 

It is often more convenient to think of a path being parameterized by the arclength traveled along the path 

from the start (assuming, of course, that you always move in the same direction along the path and don’t retrace 

the path). In this case we can think of the arclength s as a function of time t, i.e. ( )s s t= . This is especially 

useful when thinking about the intrinsic shape of the path independent of how quickly you move along it. It then 

becomes natural to define the curvature in terms of the rate of change of direction with respect to distance 

traveled. We thus define the curvature   by 
d
ds

 =
T

. It is rarely easy to actually re-parameterize a path by its 

arclength, so it’s helpful to be able to express the curvature (and other useful things) in terms of the original 

parameter t. To make the connection, we use the Chain Rule. 

 ( ( )) ( ) ( ( )) ( )
d d d ds d

s t s t s t t
dt dt ds dt ds

 = = = =
T T T

T T v  where we’ve conveniently used the fact that ( ) ds
dt

t =v . 

So 
( )

( )

d t

ds t


=

T T

v
 and, therefore, the curvature may also be written as 

( )

( )

td

ds t



= =

TT

v
. 

Example: Let’s look at the familiar parabola 
2y x=  in the xy-plane. This is a static, algebraic equation for the 

parabola, but we can also describe it parametrically by letting x t=  (and therefore 
2y t= ). We thus get the 

position vector and parameterization 2( ) ,t t t=r . We can then easily calculate that ( ) 1,2t t=v  and 

( ) 0,2t =a . These are all shown in the accompanying sketch. We can also quickly calculate the speed 

2( ) 1 4t t= +v  as well as the unit tangent vector 
2 2 2

1,2 1 2
( ) ,

1 4 1 4 1 4

t t
t

t t t
= = =

+ + +

v
T

v
. If we exercise 
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our differentiation skills (especially the quotient rule), we can then calculate 
3 3

2 22 2

4 2
( ) ,

(1 4 ) (1 4 )

t
t

t t

−
 =

+ +
T . Its 

magnitude is then 
3 3

2 2

2 2

22 2

16 4 2 4 1 2
( )

1 4(1 4 ) (1 4 )

t t
t

tt t

+ +
 = = =

++ +
T . The curvature is therefore given by 

3
22

( ) 2

( ) (1 4 )

t

t t



= =

+

T

v
.  

 

Note that 0t =  corresponds to the origin (0,0)  and that at this point the curvature is 2 = . Further note that for 

0t  , the curvature decreases. This is consistent with the shape of the parabola. 


