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Math E-21a – Notes on the Chain Rule and Implicit Differentiation 

The Chain Rule 
The chain rule is an algebraic rule that describes how to calculate rates of change of functions built from 

other functions through composition. For example, in a first semester calculus course we learn that if ( )y y u=

and ( )u u x= , then we can calculate dy

dx
 by the chain rule: dy

dx

dy

du

du

dx
= . In a multivariable setting, we might have 

( , )z z x y=  and ( )x x t= , ( )y y t= . We then have dz z dx z dy

dt x dt y dt

∂ ∂
= +
∂ ∂

, the basic chain rule. 

The chain rule gets more interesting when you apply it to situations where there are more input variables 
and output variables. For example, let us suppose we have a situation where there are two parameters, φ and θ, 

and that for any φ and θ we have equations giving 
( , )
( , )
( , )

x x
y y
z z

= φ θ  = φ θ 
 = φ θ 

. Let us further suppose that for any choices of 

the variables x, y, and z we have two other variables, u and v, defined by equations 
u u x y z

v v x y z

=
=









( , , )

( , , )
.  

In this case we can think of this functionally as 

( , ) ( , , ) ( , )G Fx y z u vφ θ → → . 

In this context, the general chain rule gives that 

u u x u y u z u u x u y u z

x y z x y z
v v x v y v z v v x v y v z

x y z x y z

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
= + + = + +

∂φ ∂ ∂φ ∂ ∂φ ∂ ∂φ ∂θ ∂ ∂θ ∂ ∂θ ∂ ∂θ
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

= + + = + +
∂φ ∂ ∂φ ∂ ∂φ ∂ ∂φ ∂θ ∂ ∂θ ∂ ∂θ ∂ ∂θ

 

These can be organized into a statement about the Jacobian matrices of the two functions and of their 
composition. A Jacobian matrix may be thought of simply as an array of (partial) derivatives of the various 
output variables with respect to the various input variables, where the outputs are listed from top to bottom and 
the inputs are listed from left to right. If you know about matrix multiplication, we have 

u u

v v

∂ ∂ 
 ∂φ ∂θ 
∂ ∂ 
 ∂φ ∂θ 

 = 

u u u

x y z
v v v

x y z

∂ ∂ ∂ 
 ∂ ∂ ∂ 
∂ ∂ ∂ 
 ∂ ∂ ∂ 

x x

y y

z z

 ∂ ∂
 ∂φ ∂θ 
∂ ∂ 
 ∂φ ∂θ
 ∂ ∂ 
∂φ ∂θ  

 or, more succinctly, F G F G=J J J


. 

To picture what this is telling us, let’s specifically look at the situation where φ and θ represent latitude and 
longitude with the minor change that latitude will be measured from the north pole as 0°, the equator as 90°, and 
the south pole as 180°. We can then describe a sphere of radius R by the parametric equations  

x R

y R

z R

=
=
=

















cos sin

sin sin

cos

θ φ
θ φ
φ

. 

[We’ll derive these later when we look at spherical coordinates in detail.] 
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Let us further suppose that the variables u and v measure, for example, temperature and barometric pressure 
at any point ( , , )x y z  in R3 and, in particular, at points on this parametrized sphere in R3. 

x

y

z

u

v

φ

θ

 
We might ask questions about how temperature would vary as we changed latitude or longitude, or how 

barometric pressure would vary as we changed latitude or longitude. These are the quantities in the Jacobian 

matrix F G

u u

v v

∂ ∂ 
 ∂φ ∂θ=  
∂ ∂ 
 ∂φ ∂θ 

J


. The rows of the Jacobian matrix F

u u u

x y z
v v v

x y z

∂ ∂ ∂ 
 ∂ ∂ ∂ =
∂ ∂ ∂ 
 ∂ ∂ ∂ 

J  are just the gradient vectors 

(in R3) of the temperature and barometric pressure functions. (Note that these are functions defined on R3 and 
not just on the spherical surface.) 

The two columns of the Jacobian matrix G

x x

y y

z z

 ∂ ∂
 ∂φ ∂θ 
∂ ∂ =  ∂φ ∂θ
 ∂ ∂ 
∂φ ∂θ  

J  represent “velocity” vectors tangent to the 

longitudes (φ varying) and latitudes (θ varying). These two column vectors are tangent to curves lying in the 
sphere and are therefore tangent to the sphere. They are, essentially, the “south vector” and the “east vector” at 
any point of the sphere (except at the poles). You might further observe that their cross product will be normal 
to this spherical surface at any given point, a fact which will be useful later in this course when we look at 
surface integrals. 

The two columns of the Jacobian matrix F G

u u

v v

∂ ∂ 
 ∂φ ∂θ=  
∂ ∂ 
 ∂φ ∂θ 

J


 represent vectors in the ( , )u v  plane and indicate 

the directions of change if we slightly vary the latitude or the longitude. 

Implicitly Defined Functions and Implicit Differentiation 
Often it is the case that an equation (or several equations) relate some variables and we wish to consider one 

variable (or several) as depending on the rest. For example, given the equation of a circle 
2 2 16x y+ =  

we may wish to consider ( )y y x= . If we solve explicitly, we get either 216y x= −  or 216y x= − − , whose 
graphs are the upper and lower semicircles. Though we could calculate the derivatives directly, there is an 
alternate approach. Think of x as a parameter and use it to parametrize either one of the semicircles as 
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( , ( ))x x y x→ , where the dependence of y on x is defined implicitly by the given curve (semi-circle). If we let 
2 2( , )F x y x y= + , then we can view the circle as just the 16F =  contour, or level set, of the function F. 

Composing these functions, we have 

( , ( )) ( , ( )) constantx x y x F x y x→ → =  

Applying the chain rule (and using Fx and Fy to denote the partial derivatives of F), we have 

( , ( )) 1 0x y

d dy
F x y x F F

dxdx
= + = . 

Here we used the fact that 1dx
dx

=  and that the composite function was constant. Solving for dy
dx

, we get that 

x

y

Fdy

dx F
= − , so as long as we avoid those places where Fy = 0 (where the two semicircles meet), we have a valid 

formula for calculating dy
dx

. In the above example, this gives 2
2

dy x x
ydx y

= − = − . This may be used for either the 

upper or the lower semicircle. 

This formulation, and the formula x

y

Fdy

dx F
= − , are valid whenever we have a relation of the form  

( , )F x y  = constant, where F is a differentiable function and where we can consider ( )y y x=  as being implicitly 
defined by the equation. The only exception is at those points where Fy = 0, i.e. at points where the tangent line 
to the relation is vertical. 

This same approach can be used for relations of the form ( , , )F x y z  = constant, where we may wish to 
consider one of the variables as being dependent on the others. For example, if we choose to think of 

( , )z z x y= , then it is useful to consider x and y as parameters and to formulate the situation as 

( , ) ( , , ( , )) ( , , ( , )) constantx y x y z x y F x y z x y→ → =  

Here we can think of the relation as a surface in R3, and what this is saying is that by choosing ( , )x y  we 
may find one point (or several points) on the graph. We can apply the chain rule to calculate the partial 
derivatives of the composition with respect to the parameters x and y. What makes this a bit tricky is the fact 
that x and y are playing dual roles as parameters and as coordinates in R3. Nonetheless, we have 

( , , ( , )) 1 0 0
( )

( , , ( , )) 0 1 0

x y z

x y z

zF x y z x y F F F
xx
zF x y z x y F F F
yy

∂ ∂= + + =
∂∂ ∗∂ ∂= + + =
∂∂

 

which enable us to solve for x

z

Fz

x F

∂
= −

∂
 and y

z

Fz

y F

∂
= −

∂
. These expressions will be valid wherever F is 

differentiable and where 0zF ≠ . It should be relatively clear that this same formulation could be done for 
relations with any number of variables and would give analogous expressions for the partial derivatives of the 
implicitly defined functions. 

Note: You can also interpret the equations ( )∗  above as saying that the vectors 1,0, z
x
∂
∂

 and 0,1, z
y
∂
∂

 are 

tangent vectors to the graph surface and are perpendicular to the gradient vector , ,x y zF F F F∇ =


. 
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Exercises: 

(1) Given the relation 7 5 3 52 6 5 3x y xy y− + = , find a formula for 
dy

dx
 that is valid for points on the curve in the 

vicinity of the point (1,1) . Then use the tangent line to approximate the y-coordinate of a point on the graph 
corresponding to 1.05x = . 

(2) Find expressions for 
z

x

∂
∂

and 
z

y

∂
∂

 and state where they are valid if z x y( , )  is defined implicitly by the relation 

ye xz x yz + − − =2 2 0 . 

(3) Suppose that quantities u and v are given in terms of x, y, and z by the equations { }2 2 2u x y z
v xy xz yz
= + −
= + + . Further 

suppose that x, y, and z are points on the sphere of radius R parametrized by φ and θ as previously described. 
Calculate each of the Jacobian matrices FJ , GJ , and F GJ



 in the case where  

(φ, θ) = (30°, 60°) = 6 3( , )π π . [Here the functions F and G are also as previously described.] 

(4) Let ( , )z f x y=  where the Cartesian coordinates ( , )x y  are related to the polar coordinates ( , )r θ  by the 
equations cosx r= θ  and siny r= θ . Do the following: 

(a) Find expressions for z
r
∂
∂  and z∂

∂θ  involving r, θ, and the partial derivatives 
z

x

∂
∂

 and 
z

y

∂
∂

. 

(b) Show that 
22 2 2

2

1z z z z

x y r r

 ∂ ∂ ∂ ∂     + = +      ∂ ∂ ∂ ∂θ      
. 

(5) Two surfaces, S1 and S2, are described by the equations: 
S1 :   

2 2 1xy x z− + =  

S2 :   
33 2y xz y= +  

These surfaces intersect in a curve C that contains the point (1,1,1) . 
(a) Find equations of the tangent planes to S1 and S2 respectively at the point (1,1,1) . 
(b) Find parametric equations for the line tangent to C at (1,1,1) . 
(c) On surface S1, its equation implicitly defines the variable x as a function of the other two variables.  

Give expressions for the two partial derivatives of this function and evaluate these expressions at the  
point (1,1,1) . 

(6) Suppose p f x y z xy yz= = +( , , ) 3  and that x, y, z are functions of u and v: 
x u v y u v z uv= + = + =ln cos sin ,   ,  1  

(a) Use the Chain Rule to find 
p

u

∂
∂

 and 
p

v

∂
∂

 at ( , ) (1, )u v = π . 

(b) Suppose now that u and v are also functions of t: 
21 sin( ) , u t v t= + π = π . 

Use your answer to part (a) and the chain rule to find 
dp

dt
 at 1t = . 

(7) The relations 
2 2 3 2

2 2 4

( , , , ) 4 0
( , , , ) 2 2 3 8 0

F x y u v x y u v
G x y u v xy y u v

 = − − + + =
 = + − + + = 

 each define 3-dimensional “hypersurfaces” in R4 

with coordinates ( , , , )x y u v . The intersection of the two hypersurfaces is 2-dimensional and can be 
parameterized by ( , )x y . That is, we can, in theory, express ( , )u u x y=  and ( , )v v x y= . Using the chain 

rule, give expressions for 
u

x

∂
∂

 and 
v

y

∂
∂

. (You may leave your answers in terms of x, y, u, and v.) 


